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ABSTRACT 

The surface structure of reinforcing elements within a matrix can produce a 
complex mechanical interaction including mechanical interlocking along the 
interface.  The interlocking can be modeled using an interface idealization at a scale 
in which the details of the surface structure are omitted and the actual interface 
traction is homogenized over a length characteristic of the surface structure.  For 
some applications such as the reinforcement of concrete with FRP bars, the 
reinforcing element can be idealized as being a circular cylinder, and the radial 
elastic interaction can affect the predicted bond behavior and failure mode.  The 
radial elastic modulus for the interface of the “homogenized model” is defined by 
requiring static equivalence of the actual and homogenized tractions and equal 
amounts of strain energy in the domains.  A unit cell approach is taken idealizing 
the traction distribution as periodic, and an analytical solution for the strain energy 
in the reinforcing element is presented.  The analytical expression for the elastic 
modulus reflects its dependence upon the traction distribution, material properties, 
and bar geometry.  To study the effects of these parameters, the bond specimen of 
an FRP bar in a concrete matrix is examined.  As the actual traction distribution 
becomes more concentrated, the interface of the homogenized model becomes more 
compliant.  For the current example of an FRP bar in normal strength concrete, the 
radial elastic modulus is most sensitive to changes in the transverse Young’s 
modulus of the FRP bar.  The elastic modulus is applied to accurately reproduce the 
effects of a nonuniform traction distribution even when the concrete fails due to 
longitudinal cracking and snap-back behavior occurs in the radial response.  The 
traction distribution and compliance of the FRP bar have a significant effect on the 
snap-back behavior indicating the potential for a very sudden failure due to concrete 
cracking. 

INTRODUCTION 

Interface descriptions of the mechanical interaction between two constituent 
materials of a body are common in computational mechanics.  The characterization 
of this interaction often includes an elastic component with different interpretations 
depending upon the application [1].  In this study, the elastic component is defined 
to characterize the local elastic response associated with mechanical interlocking 
between surface structures (i.e., the deviation of the actual geometry from that of an 
idealized model such as a circular cylinder), which are not explicitly modeled at a 
larger scale. 

Recently Cox and Yu [1] derived an analytical expression for the elastic modulus 
of an interface model characterizing the elastic interaction between a slender 
axisymmetric reinforcing element and a matrix.  The study [1] was motivated by the 
need for computational models at a scale in which the reinforcement and matrix are 



 

modeled as solids, and an interface model is used to characterize the progressive 
failure of the mechanical interaction. 

The current research (see [2] for more details) differs from the earlier study [1] in 
the motivating problem.  In the previous study, the deformation of the 
reinforcement was neglected, thus the formulation was limited to composites with 
reinforcing elements (e.g., steel) having a small transverse compliance relative to 
the matrix (e.g., concrete).  In this study, the motivating problem is the mechanical 
interaction between fiber-reinforced polymer (FRP) reinforcing bars and a concrete 
matrix.  For FRP bars the transverse compliance is approximately 20 to 30 times 
that of steel and approximately 2 to 4 times that of concrete, thus the local 
deformation of both the matrix and reinforcement are now considered.  The 
increased radial compliance of the FRP bars affects the mechanical interlocking.  
For example, “cyclic bond stress vs. slip behavior” has been observed for several 
bond tests of FRP bars (see e.g., [3,4]).  The spatial period of the response cycles 
corresponds to the length of the periodic surface structure of the bar, reflecting that 
there must be significant radial compliance. 

Similar to steel bars, many FRP bars have a fabricated surface structure that 
produces a significant mechanical interlocking with the adjacent concrete.  The 
mechanical interlocking produces a complicated interface traction distribution due 
to the resulting contact conditions.  The radial component of the traction tends to 
produce significant hoop stress in the adjacent concrete and can fail the concrete in 
longitudinal cracking1 (see e.g., Tepfers [5]).  One motivation for examining the 
radial compliance is that it can significantly affect the bond strength and failure 
mode for an FRP bar in a concrete matrix (pull-out vs. failure due to longitudinal 
cracking – splitting failure).  For computational “bond models” in which the surface 
structure geometry is explicitly modeled (rib-scale models [6]) the detailed effects 
of the mechanical interlocking are accounted for directly.  A larger scale of 
modeling (bar scale [6]) amenable to the analysis of structural components 
represents the reinforcement as an cylindrical solid (eliminating the geometric detail 
of the surface structure) and uses an interface idealization to characterize the effects 
of mechanical interlocking.  This type of model was recently used by Guo and Cox 
[7,8] to reproduce the behavior of various test specimens.  The model represents the 
kinematics of the mechanical interlocking (i.e., the “wedging effect” of the surface 
structure) through an inelastic radial dilation of the interface which is partially 
negated by an elastic radial contraction of the interface.  Unfortunately while the 
tangent elastic response can be estimated from experimental data, experimental data 
on the radial elastic response is not available.  Thus further investigation of the 
radial elastic modulus associated with the interface is needed. 

This paper focuses on the radial elastic response attributed to an interface 
idealization when the actual traction distribution along the interface is assumed to 
be axisymmetric and nonuniform (but periodic) in the axial direction.  The paper is 
organized into sections that address the following areas: (2) idealizations of 
analytical models needed to define the elastic modulus of the interface, (3) brief 
review of analytical solution, (4) use of the analytical solution to determine an 
equivalent elastic modulus of the interface idealization and parameter studies, (5) 
application of the model in predicting longitudinal cracking in a concrete matrix, 
and (6) summary and conclusions.  Additional details are available in reference [2]. 

                                                 
1 Ideal longitudinal cracks occur in a θ-plane assuming a cylindrical coordinate system in which the 
z-axis is aligned with the axis of the bar. 
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ANALYTICAL MODEL 

To define an elastic modulus for an 
interface idealization that 
incorporates analytical solutions, a 
few simplifications are adopted at 
both scales (rib-scale and bar-scale).  
At both scales the interface is 
idealized as being smooth.  At the 
smaller scale (rib-scale), the effect of 
mechanical interlocking is 
represented by a more concentrated 
interfacial traction distribution.  For 
the bar-scale model the actual traction 
is homogenized over a characteristic 
length, e.g., the length of spatial 
periodicity of the surface structure.  
By definition, the actual and 
homogenized tractions are statically 
equivalent loads, but their mechanical 
effects differ. 

Figures 1(a-d) show θ-sections of 
the axisymmetric rib- and bar-scale 
models.  The concrete is modeled as a 
thick-walled cylinder and idealized as 
being homogeneous, isotropic and 
linear elastic (Young’s modulus Ec and Poisson’s ratio νc).  The FRP cylinder is 
treated as transversely isotropic and linear elastic with five independent material 
constants: longitudinal Young’s modulus (EL), transverse Young’s modulus (ET) 
and Poisson’s ratio (νTT), and longitudinal-transverse shear modulus (µLT) and 
Poisson’s ratio (νLT). 
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Figure 1. Idealized analytical models. 
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Let sr denote the characteristic length associated with the assumed periodic 
structure (e.g., rib-spacing) along the longitudinal axis (z-axis).  In Figures 1(a-d) 
the elastic problems are defined for a unit cell of length sr.  The rollers along the 
edges z=± sr/2 and the radial traction distributions (even about the r-axis) produce 
response symmetries consistent with the unit cell assumptions.  For the rib-scale 
model (Figures 1a,c) the radial traction distribution t is nonzero over the contact 
length Lt, and for the bar-scale model (Figures 1b,d) σ denotes the homogenized 
traction over sr.  The tractions are related through static equivalence as 

 σ = 1
sr

t z( )dz
− sr 2

sr 2

∫  (1) 
The interface model for the bar-scale problem has a radial elastic stiffness 

(denoted as De) that relates σ to the relative radial displacement (δn) of initially 
coincident points on the interface (positive in extension).  The radial elastic 
stiffness of the interface (for brevity, the interface stiffness) has dimensions of force 
per length3.  Alternatively, deformations of the interface are often 
nondimensionalized by characteristic lengths that can be related to the surface 
structure (see e.g., [6,9]); thus some results will be presented in terms of a 
generalized strain measure defined as 

 qn=δn/db (2) 
where db=2ri, the bar diameter.  (The surface structure scales with db for typical 
FRP bars.)  The corresponding radial elastic modulus relating σ and qn is denoted 
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by .  Thus σ is related to the interface stiffness, elastic modulus and kinematic 
variables by 

ˆ D e

 σ=Deδn= D qˆ e
n De= D /dˆ e

b (3a,b) 
The increase in compliance associated with the concentration of the actual interface 
traction can be additively decomposed into parts associated with the concrete 
(1/ , Figure 1b) and reinforcing bar (1/ , Figure 1d); i.e., the interface 
compliance satisfies 

Dcon
e Dbar

e

  De −1
= Dcon

e −1
+ Dbar

e −1 ˆ D e
−1

= ˆ D con
e −1

+ ˆ D bar
e −1

 (4a,b) 
By Equation (1) the rib- and bar-scale models are equivalent in the Saint-Venant 

sense.  Further, we equate the strain energies stored in the elastic bodies of 
problems (a,c) to those of problems (b,d).  We select this equivalence measure 
because potentially the strain energy can be released to drive cracks in the 
materials.  Since the strain energy stored in an elastic body is equal to the work 
done by external loading, the “energy equivalence” requires 
 Wa

t = Wb
σ  Wc

t = Wd
σ  (5a,b) 

where  denotes the work done by t in problem (a), and so on.  Solving 
expressions for the elastic modulus from Equations (4) and (5) requires that each 
work expression be obtained analytically.  The next section gives a brief overview 
of the procedure for solving these elasticity problems. 

Wa
t

ANALYTICAL SOLUTION 

The solution approach for problem (c) is the same as that previously used for 
problem (a) [1], where the variations of the displacements in the z-direction are 
expressed in terms of orthonormal trigonometric bases (i.e., a Fourier series 
approach).  The bases for even and odd functions of z are 

Φcn (z) =

1
sr

,         n = 0

cos(zωn )
sr / 2

,n > 0

 

 
 

 
 

, Φsn(z) =
sin(zω n)

sr / 2 , ωn =
2πn
sr

. (6a-c) 

Due to the symmetry of the problem, the nonzero displacements ur and uz are even 
and odd functions of z, respectively, and thus can be expressed as 

 , ur r,z( )= vrn (r)
n= 0

∞

∑ Φcn (z) uz r,z( )= vzn(r )
n=1

∞

∑ Φsn (z) . (7a,b) 

Substituting the above definitions into the strain-displacement and constitutive 
relationships yields the stress components as 

 , σ rr r, z( ) = σ n
n=0

∞

∑ (r)Φcn (z) σ rz r, z( ) = τ n
n=1

∞

∑ (r)Φ sn (z), (8a,b) 

The coefficient functions are projections of the solutions onto the basis, e.g., 
 vrn (r) = ur r,z( ),Φcn (z) , vzn(r ) = uz r,z( ),Φ sn(z)  (9a,b) 

The solutions to the coefficient functions can be obtained by substituting the 
series expressions into the governing equations, solving the resulted differential 
equations, and applying the traction boundary conditions for the unknown constants 
 σrr r= ri = t , σrz r= ri = 0, (10a,b) 
where t denotes a generic distribution of traction normal to the surface (Figure 1c).  
The traction t can also be projected onto the basis 
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 Φcn ,σ rr r =ri
= Φcn,t =αn (11a,b) 

where the α’s are the coordinates of t in the Φc basis (i.e., Fourier coefficients of t).  
Details of the solution procedure are presented in [2] and are omitted here for 
brevity. 

ELASTIC MODULUS 

The work done by t in problem c (Figure 1c) can be calculated as follows 

 Wc
t = 1

2 2πrit z( )[ ]ur
bar

− sr / 2

sr / 2

∫ ri , z( )dz = πri αnνrn
bar ri( )

n=0

∞

∑ = W0
bar + πri αnvrn

bar (ri )
n=1

∞

∑  (12a) 

where the superscript “bar” denotes the bar subdomain, αn and vrn(ri) are the Fourier 
coefficients of t and ur(ri,z), respectively, and W0=πriα0vr0(ri) is the work done by a 
uniformly distributed radial traction σ acting over a surface of length sr.  In a 
similar manner, applying the elastic solution for the concrete subdomain [1] and the 
definitions of Equations (2,3a), we can explicitly write the other work terms of 
Equations (5) as 

 Wa
t = W0

con − πri α nvrn
con(ri )

n =1

∞

∑  (12b) 

 Wb
σ = W0

con +πrisrσ
2 db

ˆ D con
e , Wd

σ = W0
bar + πrisrσ

2db
ˆ D bar

e  (12c,d) 
where db=2ri and the superscript “con” denotes concrete.  Substituting Equations 
(12a-d) into Equations (4b) and (5) and solving for  gives ˆ D e

 ˆ D e = srσ
2db αn −vrn

con(ri ) + vrn
bar(ri )[

n=1

∞

∑ 
 
 

 
 
 
]

−1

 (13) 

Cox and Yu [1] gave  for the case of “rˆ D con
e

o sufficiently large relative to ri” (e.g. 
ro/ri≥2) as follows 

 ˆ D con
e = −

α n
2κ n

α 0
2 Ecn=1

∞

∑
 

 
  

 
 

−1

 (14) 

where κn is nondimensional and given by 
 κ n = 1 −νc

2( )K1
2 ωnri( ) ωnri( )2

K0
2 ωnri( )− K1

2 ω nri( )[ ]− 2 1 −νc( )K1
2 ωnri( ){ } (15) 

K ~ modified Bessel functions of the second kind. 
The radial elastic modulus for the interface of an FRP bar is 

 ˆ D bar
e =

αn
2ξn

α0
2 Bnn=1

∞

∑
 

 
  

 
 

−1

 (16) 

where ξn is dimensionless and given by 
 ξn = 1

2 pηq − qηp( )I1 pωnri( )I1 qω nri( ) (17) 
I ~ modified Bessel functions of the first kind, and 

Bn= ωnri(-ηp+p)(C13+C11qηq)Ι0(qωnri)Ι1(pωnri)+ 
 ωnri(ηq-q)(C13+C11pηp)Ι0(pωnri)Ι1(qωnri)+ 

 (qηp-pηq)(C11-C12)Ι1(pωnri)Ι1(qωnri) (18) 
has units of Young’s modulus [2].  The radial elastic modulus accounting for both 
contributions can be written as 
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TABLE I. SPECIMEN DATA. 

EL (GPa) ET (GPa) µLT (GPa) νLT νTT Ec (GPa) νc 
39.8 9.29 3.78 0.274 0.42 30.7 0.17 

 

Lt (mm) ri (mm) sr (mm) Lt/sr ri/sr ro/ri 
4.29 9.525 34.3 0.125 0.28 4.0 

 ˆ D e = ˆ D con
e −1

+ ˆ D bar
e −1( )−1

=
αn

2

α0
2

n=1

∞

∑ ξn

Bn

−
κ n

Ec

 

 
  

 
  

  
 

  

−1

 (19) 

The above analytical results will now be applied to the bond specimen of Malvar 
[10] using the “type D” GFRP bar (Table I).  The bar has a helical surface, and a 
relatively concentrated interface contact (Lt/sr=1/8) is assumed.  Such concentrated 
contact is possible since the surface misfit between the bar and concrete can be 
significant when relative slip occurs.  The concrete used in the specimen has normal 
strength.  The ratio ro/ri verifies the assumption that the hollow cylinder of concrete 
is “sufficiently thick” for the previous solution [1] to be applicable.  D  is 
dependent on the traction distribution (via α

ˆ e
n/α0), the seven independent material 

constants of the FRP and concrete and ri/sr (via ωnri).  Parameter studies addressing 
the first two factors are presented in the next three sub-sections. 

Effect of Traction Distribution 

We consider three types of traction distributions: uniform, half-cosine and 
triangular [2].  The traction distribution affects the radial elastic modulus of the 
interface via the term αn/α0.  The “nondimensionalized contact length” (β=Lt/sr) and 
the distribution type affect the concentration of the traction.  For the same 
distribution type, the traction is more concentrated for a smaller β; whereas for the 
same value of β, the traction is most concentrated for the triangular distribution and 
least for the uniform distribution. 

The effect of the traction distribution is examined in Figure 2. /Eˆ D e c vs. Lt/sr (β) 
is plotted for the three types of distributions.  An increased concentration of the 
traction (either due to distribution type or β) produces a more compliant interface.  
As β  decreases the effect of the distribution type upon the elastic modulus 
decreases (e.g., the two non-uniform distributions give very close predictions for a 
large range of β).  For full-contact (β=1) the elastic modulus becomes infinite for 

the uniform traction case (since the 
traction distributions of the rib-scale 
and bar-scale models are the same), 
but finite for any other traction 
distribution representing full-contact. 

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

uniform distribution
half-cosine distribution
triangular distribution

D
 e

/E
c

Lt /sr

^

 
Figure 2. Dependence of e  on contact length 

and traction distribution type. 
ˆ D 

Effect of Material Constants 

 6 Yu/Cox 



 

Figure 3 contains the results of a parameter study on the effects that the seven 
independent material constants have on .  Percent changes in  vs. percent 
changes in each material constant are shown.  A half-cosine distribution of traction 
and β=1/8 (Table I) were assumed in the calculations.  Changes in E

ˆ D e ˆ D e

L, νLT and νc 
have the least effects on .  For the current example, changes in Eˆ D e c, νTT and µLT 
do not have the largest effects but do produce relatively significant changes, 
whereas changes in ET have the most significant effect on . ˆ D e

Effect of Bar Geometry 

The parameter ri/sr (bar radius / rib spacing) affects  through the argument of 
the modified Bessel functions.  Parameter studies [2] have shown that the elastic 
modulus decreases as r

ˆ D e

i/sr decreases; however, the variation in the FRP contribution 
becomes very small when ri/sr is relatively small.  The effect of the FRP on the 
elastic compliance is greater than that of the concrete, but the difference in the two 
contributions decreases with ri/sr. 

APPLICATION 

The mechanical interaction between FRP bars and concrete provides a good 
application area for the developed theory.  We examine the bond specimen 
described in Table I and adopt axisymmetric finite element models.  The FRP is 
idealized as being transversely isotropic and linear elastic.  The concrete is modeled 
as quasibrittle, with three longitudinal cracks modeled as cohesive cracks [2].  
Axisymmetric FE models of the unit cell of the bond specimen were developed at 
both scales – the rib- and bar-scales (Figure 1).  The case of a uniformly distributed 
t over Lt is examined, thus the rib-scale model is referred to as being “ring-loaded.”  
The “bar-scale” or homogenized model incorporates a homogenized traction and an 
interface with a stiffness De defined by Equations (3b) and (19). 

The “interface responses” of the two types of models are compared in Figure 4.  
The magnitude of σ (t Lt/sr for the ring-loaded models) vs. ∆u (relative 
displacement) is compared for each of the constituent materials and their 
combination.  Figure 5 examines the response for contact ratios (Lt/sr) of: 1, 1/2, 
1/4, and 1/8.  The main observations are: 
1. The responses of both types of models are nearly indistinguishable for the 

concrete, FRP and their combination. 
2. The specimen exhibited snap-back behavior in the radial response.  The added 
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compliance of the FRP increases the amount of elastic strain energy stored at the 
peak load and the potential of snap-back behavior in the radial response. 

3. The potential for snap-back behavior increases with a reduction in the contact 
area because of the increased elastic energy stored in local deformation. 

SUMMARY AND CONCLUSIONS 

By accounting for “static equivalence” and “energy equivalence” the radial 
elastic response due to a known traction distribution along an interface (e.g., 
attributed to mechanical interlocking) can be accurately represented in a larger scale 
(i.e., homogenized) model.  The actual traction distribution causes deformation of 
each constituent material which can be represented by additional interface 
compliance in the homogenized model.  By making several simplifying 
assumptions and adopting a unit cell approach, expressions for the radial elastic 
modulus can be obtained in closed form.  The theoretical development of the radial 
elastic modulus is applicable to the problem of the mechanical interaction between 
FRP bars and concrete.  A bond specimen is examined to study the effects of 
traction distribution, material properties, and bar geometry on the radial elastic 
modulus.  Among the findings were: 
1. An increased concentration of the actual traction (either due to distribution type 

or contact length) produces a more compliant interface in the homogenized 
model. 

2. Changes in EL, νLT and νc have negligible effects on the variation of , whereas 
 is most sensitive to changes in E

ˆ D e
ˆ D e T for normal strength concrete. 

3. Reducing ri/sr leads to a decreased elastic modulus. 
The same bond specimen was used to examine how  may affect the radial 

response when the concrete develops longitudinal cracking by comparing the 
homogenized model (bar-scale) to a rib-scale model.  Among the findings were: 

ˆ D e

1. The responses of both types of models are nearly indistinguishable. 
2. Snap-back behavior occurred in part due to the elastic energy associated with 

local deformation.  Both the relative compliance of the two constituent materials 
and the contact condition have a significant effect upon the snap back behavior. 
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